
gpsim

$Date:: 2017-06-12#$

Contents

1 gpsim - An Overview 6

1.1 Making the executable . 6

1.1.1 Make Details - ./configure options 6

1.1.2 RPMs . 7

1.1.3 Windows . 7

1.2 Running . 7

1.3 Requirements . 8

2 Command Line Interface 9

2.1 attach . 10

2.2 break . 11

2.3 clear . 13

2.4 disassemble . 14

2.5 dump . 14

2.6 echo . 15

2.7 frequency . 15

2.8 help . 15

2.9 icd . 15

2.10 list . 15

2.11 load . 16

2.12 macros . 16

2.13 module . 18

2.14 node . 19

2.15 processor . 20

2.16 quit . 20

2.17 run . 20

2.18 step . 20

1

CONTENTS 2

2.19 symbol . 21

2.20 stimulus . 21

2.21 stopwatch1 . 22

2.22 trace . 23

2.23 version . 23

2.24 x . 23

3 Graphical User Interface 24

3.1 Main window . 24

3.1.1 Menus . 24

3.1.2 Buttons . 24

3.1.3 Simulation mode . 25

3.2 Source Browsers . 25

3.2.1 .asm Browser . 25

3.2.2 Opcode view - the .obj Browser 26

3.3 Register views . 27

3.4 Symbol view . 28

3.5 Watch view . 28

3.6 Stack viewer . 29

3.7 Breadboard . 29

3.8 Trace viewer . 30

3.9 Profile viewer . 30

3.10 Stopwatch . 31

3.11 Scope Window . 32

4 Scripting and Configuring 33

4.1 Embedded Commands . 33

4.1.1 .sim macro . 33

4.1.2 .command macro . 34

4.1.3 .assert macro . 34

4.2 Sockets . 35

5 Assertions and Extended Breakpoints 36

5.1 Assertions and Embedded Simulation commands 37

6 Trace and Log: What has happen? 38

CONTENTS 3

7 Simulating the Real World: Stimuli 41

7.1 How They Work . 41

7.1.1 Contention among stimuli 42

7.2 I/O Pins . 42

7.3 Asynchronous Stimuli . 43

7.3.1 Analog Asynchronous Stimuli 44

7.4 Extended Stimuli . 44

7.5 Limitations of the Stimulus Mechanism 44

7.5.1 Propagation Delays . 45

8 Modules 46

8.1 gpsim Modules . 47

8.1.1 USART . 48

8.1.2 Logic . 48

8.1.3 I2C EEPROM . 50

8.1.4 Switches & Resistors . 51

8.1.5 Voltage Sources, Resistors, and Capacitors 51

8.1.6 LED_7SEGMENTS and LED 51

8.1.7 I2C slave to Parallel port . 52

8.2 Extras Modules . 53

8.2.1 Temperature and humidity sensor - DHT11 53

8.2.2 64 x 8, Serial, I2C Real-Time Clock - DS1307 54

8.2.3 High-Precision 1-Wire Digital Thermometer - DS1820 Family 54

8.2.4 Character LCD - HD44780 54

8.2.5 Graphic LCD - SED1530 . 55

8.2.6 LCD_7Seg . 55

8.2.7 Solar . 55

8.3 Writing new modules . 56

9 Symbolic Debugging 58

10 Macros 59

11 Hex Files 60

12 The ICD- Not Supported in versions 0.21.0 and later 61

13 Examples 63

14 Regression Tests 64

CONTENTS 4

15 Theory of Operation 65

15.1 Background . 65

15.2 Instructions . 65

15.3 General File Registers . 66

15.4 Special File Registers . 66

15.5 Example of an instruction . 67

15.6 Trace . 68

15.7 Breakpoints . 68

15.8 TIMER1 External input . 69

16 LICENSES 70

16.1 Gpsim.lyx . 70

16.2 Gpsim . 70

16.3 Libraries libgpsim, libgpsim_modules, libgpsim_eXdbm 70

Introduction

gpsim is a full-featured software simulator for Microchip PIC microcontrollers dis-

tributed under the GNU General Public License and GNU Lesser Public License(see

the LICENSE section).

gpsim has been designed to be as accurate as possible. Accuracy includes the entire

PIC - from the core to the I/O pins and including ALL of the internal peripherals. Thus

it’s possible to create stimuli and tie them to the I/O pins and test the PIC the same way

you would in the real world.

gpsim has been designed to be as fast as possible. Real time simulation speeds of

20Mhz pics are possible.

gpsim can be controlled from either a graphical user interface (GUI), a command line

interface (CLI) or by a remote process. Typical debugging features like breakpoints,

single stepping, disassembling, memory inspect & change, and so on are all supported.

In addition, complex debugging features like real time tracing, assertions, conditional

breaks, and plugin modules to name a few are also supported.

5

Chapter 1

gpsim - An Overview

If you don’t care to wade through details, this chapter should help you get things up and

running. The INSTALL and README files will provide more up-to-date information

than this document, so please refer to those first.

1.1 Making the executable

gpsim’s executable is created in a manner that’s consistent with much of the other open

source software:

command description

tar -xvzf gpsim-x.y.z.tar.gz expand the compressed tar file

./configure Create a ’makefile’ unique to your system

make compile gpsim

make install install gpsim

The last step will require root privileges.

1.1.1 Make Details - ./configure options

gui-less

The default configuration will provide a gui (graphical user interface). The cli (com-

mand line interface) is still available, however many people prefer just to use the cli.

These hardy souls may build a command-line only interface by configuring gpsim:

./configure --disable-gui

debugging

If you want to debug gpsim then you will probably use gdb. Consequently, you will

want to disable shared libraries:

6

CHAPTER 1. GPSIM - AN OVERVIEW 7

./configure --disable-shared

This will create one, huge monolithic executable with symbolic information.

1.1.2 RPMs

gpsim is also available in RPM form from linux distributions such as Fedora.

1.1.3 Windows

Gpsim runs on Windows too. Both release and snapshot gpsim apps can be installed

and run on windows machines.

The release version of the gpsim apps are generated on each new release of gpsim.

These can be downloaded from the following web site:

https://sourceforge.net/projects/gpsim/files/gpsim-win32/

The snapshot versions are generated from time to time from the then current source

code and will contain bug fixes and new features added since the last release. These

versions should work, but are not given the extra testing of a new release. Snapshots

can be downloaded from:

https://sourceforge.net/projects/gpsim/files/snapshot_builds/gpsim-win32/

If you wish to build your own windows version of gpsim, the late Borut Razem has

documented the process which can be found at this location:

http://gpsim.sourceforge.net/gpsimWin32/gpsimWin32.html

1.2 Running

The executable created above is called: gpsim. The following command line options

may be specified when gpsim is invoked.

gpsim [-?] [-p <device> [<hex_file>]] [[-c] <stc_file>] [[-s] <symbol file>]

-p, --processor=<processor name> processor (e.g. -pp16c84 for the ’c84)

-c, --command=STRING startup command file (optional .stc files)

-s .cod symbol file (optional .cod files)

-L, -- colon separated list of directories to

search.

-v, --version gpsim version

-i, --cli command line mode only

-d, --icd=STRING use ICD (e.g. -d /dev/ttyS0).

Help options:

-?, --help Show this help message

--usage Display brief usage message

CHAPTER 1. GPSIM - AN OVERVIEW 8

Typically gpsim will be invoked like:

[My-Computer]$ gpsim mypic-program.cod

(The [My-Computer]$ text is an example of a typical bash command prompt - you will

only type the text after this prompt). This loads the .cod file generated by gputils.

Under Windows, gpsim can also be invoked by navigating through the Start/Program

menu. This will open a DOS window to provide access to the command line interface.

It’s also possible to open a DOS window (or CygWin bash session) and invoke gpsim

from there.

1.3 Requirements

gpsim has been developed under Linux. It should build and run just fine under the

popular Linux distributions like Fedora, Ubuntu, etc. gpsim has also been ported to the

MAC, MicroSoft Windows, Solaris, and BSD. Two packages gpsim requires that may

not be available with all Linux distributions are readline and gtk (the gimp tool kit).

The ./configure script should tell you if these packages are not installed on your system

or if the revisions that are installed are too old.

There are no minimum hardware requirements to run gpsim. Faster is better though!

gputils, the gnupic utilities package, is also very useful. gpsim will accept straight

hex files, but if you want to do any symbolic debugging then you will want to use the

.cod1 files that gputils produces. The .cod files are in the same format as the .cod files

MPASM2 produces.

1.cod files are symbol files that were created by ByteCraft and are used by Microchip.
2MPASM is Microchip’s Assembler.

Chapter 2

Command Line Interface

The command line interface is fairly straight-forward. The table below summarizes the

available commands. Brief descriptions of these commands can also be displayed by

typing help at the command line.

9

CHAPTER 2. COMMAND LINE INTERFACE 10

command summary

attach Attach stimuli to nodes

break Set a break point

bus Add or display node busses

clear Remove a break point

disassemble Disassemble the current cpu

dump Display either the RAM or EEPROM

frequency Set processor frequency

help Type help "command" for more help on a command

icd In Circuit Debugger support.

list Display source and list files

load Load either a hex or command file

log Log/record events to a file

node Add or display stimulus nodes

module Select & Display modules

processor Add/list processors

quit Quit gpsim

reset Reset all or parts of the simulation

run Execute the pic program

set display and control gpsim behavior flags

step Execute one or more instructions

stimulus Create a stimulus

stopwatch Measure time between events

symbol Add/list symbols

trace Dump the trace history

version Display gpsim’s version

x (deprecated) examine and/or modify memory

The built in ’help’ command provides additional online information.

2.1 attach

attach node1 stimulus1 [stimulus2 stimulus_N]

Attach is used to define connections between one or more stimulus and a node. One

node and at least one stimulus must be specified, but in general two or more stimuli

are used. Attach can be viewed as wiring stimuli together, with the node acting as the

wire. A stimulus is either a CPU or module I/O pin or a stimulus name.

Attach_pointN can have one of the following formats

pin(<number>) or pin(<symbol>)

This refers to a pin of the current active CPU.

<number> is the pin number

CHAPTER 2. COMMAND LINE INTERFACE 11

<symbol> is an integer symbol whose value is a pin number

<connection> or pin(<connection>)

These two forms are treated exactly the same (i.e. the pin() has no mean-

ing).

<connection> is a stimulus name or an I/O pin name.

I/O pin name can be just the pin name for the CPU or <module_name>.pin_name

for a module or CPU

Example

**gpsim> load instructions_14bit.cod # load code

**gpsim> module library libgpsim_modules #load module lib

**gpsim> module load usart U1 # create USART

**gpsim> node n1 # define a node

**gpsim> node n2 #define another node

**gpsim> symbol TWO=2 #define symbol with value 2

**gpsim> attach n1 pin(1) pin(TWO) #attach CPU pins 1 and 2

**gpsim> attach n1 U1.RXPIN #add usart pin to n1

**gpsim> attach n2 portb0 pin(U1.TXPIN) #connect portb0 to UASRT TX pin

**gpsim> node # show results

2.2 break

The break command is used to set and examine break points. New break points are

assigned a unique number. This number can be used to query or clear the break point.

Break points halt the simulation when the condition associated with them is true. Break

points are ignored during single stepping. See chapter 5 for more examples of break-

points.

Examining break points

break [bp_number]

Break points can be examined by typing the break command without any options. Spe-

cific breaks can be queried by specifying the break point number.

Program Memory/Execution breaks

The most common break point is an execution break point. This one halts execution

whenever the program counter reaches the address at which the break point is set. The

syntax is:

break e|r|w ADDRESS [,expr [,message]]

CHAPTER 2. COMMAND LINE INTERFACE 12

The simulation halts when the address is executed, read, or written. The ADDRESS can

be a symbol or a number. If the optional expression is specified, then it must evaluate

to true before the simulation will halt. The optional message allows a description to be

associated with the break. The read and write options only apply to those processors

that can manipulate their own program memory.

Register Memory breaks

gpsim can also associate break points with register accesses. This is useful for cap-

turing bugs that stomp on RAM. E.g. you can say something like “halt execution

whenever bit 4 of register 42 is cleared”. The command line syntax is:

break r|w|ch REGISTER [,expr [,message]]

The simulation halts when REGISTER is read, written, or changed on write, and the

optional expression evaluates to true.

Other syntaxes with a boolean expression are:

break r|w|ch REGISTER == value

The simulation halts when REGISTER is assigned the specified value, and:

break r|w|ch REGISTER & mask == value

The simulation halts when specified bits in REGISTER are assigned the specified

value.

Here’s an example of a register write break. This one will halt the simulation if any

value is written to the variable named temp1.

break w temp1

Sometimes it’s necessary to specify an auxiliary condition with a break point. For

example, there may be a temporary variable that is shared throughout the code. You

may wish to trap writes to that variable only while executing a specific subroutine.

For example, the following break point triggers when temp1 is written and while the

program counter is in between the labels func_start and func_end:

break w temp1, (pc >= func_start && pc < func_end)

TIP: Use this type of break point if you suspect an interrupt routine is over writing a

variable.

Another situation is one where you wish to trap writes to a variable only if some other

variable is a certain value:

break w temp1, (CurTask & 0x0f != 0b101)

CHAPTER 2. COMMAND LINE INTERFACE 13

If the firmware writes to the variable temp1 then the simulation will halt if the lower

nibble of CurTask is not equal to 5.

This example breaks only if the hex digit ’C’ is written to the upper nibble of temp1:

break w (temp1 & 0b11110000) == 0b11000000

Processor exception breakpoints

Stack overflow, underflow and watchdog timeout can also halt the simulation.

break so

break su

break wdt

Attribute Breakpoints

break attribute

gpsim also supports a concept of attribute breakpoints. Attributes are parameters that

gpsim and its modules expose to the user interface. For example, the simulator stop-

watch exposes attributes which support breakpoints. This feature is intend mainly for

module writers to provide a mechanism for allowing the user to control the module.

Cycle counter Breakpoints

break c cycle_number

The cycle counter is gpsim’s time keeper. It increments once every instruction cycle.

The ’c’ option to the break command allows a break point to be set at a particular value

of the cycle counter.

2.3 clear

clear bp_number

The clear command is used to clear break points. The break point number must be

specified. The break command without any arguments displays all of the currently

defined break points. This can be used to ascertain the break point number. Once

cleared, a break point is deleted. 1

1A break point disable/enable feature has been discussed and may be added a future date.

CHAPTER 2. COMMAND LINE INTERFACE 14

2.4 disassemble

disassemble [[begin:end] | [count]]

The disassemble command decodes the program memory opcodes into their standard

mnemonics. With no options, the disassemble command disassembles instructions

surrounding the current program counter:

gpsim> disassemble

current pc = 0x1c

0012 2a03 incf reg3,f,0

0014 0004 clrwdt

0016 5000 movf reg,w,0

0018 1001 iorwf reg1,w,0

001a 1002 iorwf reg2,w,0

==> 001c 1003 iorwf reg3,w,0

001e e1f4 bnz $-0x16 ;(0x8)

0020 d7ff bra $-0x0 ;(0x00020)

With a single numeric option, the disassemble command will disassemble given num-

ber of instructions starting with the instruction at the PC.

With a two numbers, the disassemble command will disassemble instructions starting

and ending given number of instructions from the PC.

2.5 dump

dump [r | s | e [module_name [filename]]]

dump r or dump with no options will display all of the file registers and special function

registers.

dump s will display only special function registers.

dump e will display the contents of the processor EEPROM (if the pic being simulated

contains any).

The ’dump e module_name’ command will display the contents of an EEPROM where

module_name can either be the name of a module or processor which contains an

EEPROM.

The ’dump e module_name filename’ command dumps the contents of a module’s

EEPROM, in Intel hex format, into the file with the given name. The ’load e’ command

can later be used to read the dumped file thus allowing the contents of the EEPROM to

be preserved between runs of gpsim.

See the ’x’ command for examining and modifying individual registers.

CHAPTER 2. COMMAND LINE INTERFACE 15

2.6 echo

The echo command is used like a print statement within configuration files. It just lets

you display information about your configuration file.

2.7 frequency

This command sets the oscillator frequency. By default gpsim uses 20 MHz oscillator.

The oscillator frequency is used to compute time in seconds. Use this command to

adjust this value. If no value is provided this command prints the current frequency.

Note that PICs have an instruction frequency that’s a quarter of the oscillator frequency

clock.

2.8 help

help [command]

By itself, help will display all of the commands along with a brief description on how

they work. With a command as a parameter help provides more extensive online help.

The help command can also display information about attributes.

2.9 icd

icd [open <port>]

The open command is used to enable ICD mode and specify the serial port where the

ICD is. (e.g. "icd open /dev/ttyS0"). Without options (and after the icd is enabled), it

will print some information about the ICD.

2.10 list

The list command allows you to view the source code while you are debugging.

list [[s | l] [*pc] [line_number1 [,line_number2]]]

Without any options, list will use the last specified options.

list s will display lines in the source (or .asm) file.

list l will display lines in the .lst file.

list *pc will display either .asm or .lst lines around the PC. Without *pc use current PC

as a reference.

Line numbers are relative to the line of the PC.

CHAPTER 2. COMMAND LINE INTERFACE 16

2.11 load

The load command is used to load a program file, a command file, or eeprom data.

Program file is usually used to program the physical part. A .hex file provides no

symbolic information. .cod files on the other hand, do provide symbolic information.

The only reason to use a hex file is when there’s no .cod file available.

The syntax for loading program files is:

load [processortype] programfile [label]

Gpsim will automatically determine if the file is a .hex or .cod file. The optional pro-

cessortype is needed if a .hex file is being loaded and the processor type is not yet

defined.

The optional label is used to identify the processor module on the breadboard and as

the prefix in the symbol table. If a label is not given then the processor type is used for

this functionality.

load [i] commandfile.stc

Command files contain gpsim commands. These are extremely useful for creating a

debugging environment that will be used repeatedly. Normally loading a command file

residing in other directories changes working directory. This can be overridden with

the ’i’ (include) option.

load e module_name file

This command loads the contents of either a processor’s EEPROM or an EEPROM

module from a file containing the data in Intel hex format. In either case the address

of the first cell of the EEPROM is 0x0000. Used in conjunction with the ’dump e

module_name filename’ command, the contents of an EEPROM can be carried over

from one run of gpsim to another.

2.12 macros

Macros are defined like:

name macro [arg1, arg2, ..., argN]

macro body

endm

And they’re invoked by:

name param1, param2, ..., paramN

CHAPTER 2. COMMAND LINE INTERFACE 17

Macros are a way of collecting several parameterized commands into one short com-

mand. The first line of a macro definition specifies the macro’s name and optional

arguments. The name is used to invoke the macro. The arguments are text string place

holders. When a macro is invoked, the parameters are aligned with the arguments. I.e.

param1 in the invocation can be thought of being assigned to arg1 in the definition.

The parameters replace the arguments in the macro body.

In the following example, a variable or attribute called mac_flags is being manipulated

in an expression. The arguments add and mask appear in the macro body and provide

a parameterized way of manipulating this expression.

mac_exp macro add, mask

mac_flags = (mac_flags+add) & mask

endm

Note that the indentation is arbitrary. The macro is invoked by:

mac_exp 1, 0b00001111 # increment the lower nibble

The parameter add is replaced by the number 1 while mask is replaced with the binary

number 0b00001111. The invocation turns into the gpsim command:

mac_flags = (mac_flags+1) & 0b00001111

Nested Macros

The macro body can contain any gpsim command. Of particular interest are macro

invocations within other macros. Here’s another macro that invokes the one defined

above.

Nested macro example

mac1 macro p1, p2

run

mac_exp p1, p2

endm

And it could be used like:

mac1 1, 0b00001111 # test lower nibble

mac1 (1<‌<4), 0b11110000 # test upper nibble

The first invocation starts the simulator by executing a run command. When a break

point is encountered, control returns to the command line and the mac_exp macro is

invoked.

CHAPTER 2. COMMAND LINE INTERFACE 18

Displaying Defined Macros

All currently defined macros can be displayed by typing the macro command without

a name or arguments:

gpsim> macro

mac1 macro p1 p2

run

mac_exp p1, p2

endm

mac_exp macro add mask

mac_flags = (mac_flags+add) & mask

endm

2.13 module

The module command is used to load and query external modules (see section 8 for

more information about gpsim modules). A module is a special piece of software that

can extend gpsim in some manner. LED’s and switches are examples of modules. A

module library is collection of modules.

Loading module libraries

module lib lib_name

The lib option is used to load a module library. Module libraries are system dependent

shared libraries, i.e. on Windows they’re DLL’s and UNIX they’re shared libraries.

This means that either the libraries should reside in a path where the OS knows libraries

exist or that the full path name must be specified along with the lib_name. gpsim

provides a module library with a few modules:

gpsim> module lib libgpsim_modules

Displaying available modules

module list

The list option will display all of the modules that can be loaded. Here is an example

of gpsim’s built-in modules.

gpsim> module list

Module Library Files

libgpsim_modules.so

switch

and2

CHAPTER 2. COMMAND LINE INTERFACE 19

or2

xor2

not

led_7segments

led

push_button

PortStimulus

pullup

pulldown

pulsegen

Encoder

usart

TTL377

I2C-EEPROM2k

I2C-EEPROM16k

I2C-EEPROM256k

Loading a specific module

module load module_type [module_name]

Once a library has been loaded, specific modules can be instantiated. The module_type

is what’s displayed by the module list command. The optional module name specifies

what the instance is called. Here’s an example

gpsim> module load led D1

Display loaded modules

module

Querying modules

Dumping modules and listing the pins is not yet implemented.

2.14 node

node [new_node1 new_node2 ...]

The node command defines or queries “nodes”, used to connect external signals to the

simulated PIC. If no new_node is specified then all of the nodes that have been defined

are displayed. If a new_node is specified then it will be added to the node list. See the

"attach" and "stimulus" commands to see how stimuli are added to the nodes.

CHAPTER 2. COMMAND LINE INTERFACE 20

examples:

node // display the node list

node n1 n2 n3 // create and add 3 new nodes to the list

2.15 processor

processor [new_processor_type [new_processor_name]] | [list] | [pins]

The processor command is used to either define a new processor or to query one that

has already been defined. Normally there’s no need to explicitly define the processor

since the symbol file already contains that information. The two exceptions are when

a) the symbolic information is not available or b) you wish to override the processor

specified in the symbol file. (See the load command on how the processor in a symbol

file can be overridden.)

To see a list of the processors supported by gpsim, type ’processor list’. To display

the state of the I/O processor, type ’processor pins’. For now, this will display the pin

numbers and their current state.

examples:

processor // Display the processors you’ve already defined.

processor list // Display the list of processors supported.

processor pins // Display the processor package and pin state

processor p16cr84 fred // Create a new processor.

processor p16c74 wilma // and another.

processor p16c65 // Create one with no name.

2.16 quit

Quit gpsim.

2.17 run

Start (or continue) simulation. The simulation will continue until the next break point

is encountered.

2.18 step

Execute a single instruction, or a specified number of instructions.

step [over | n]

CHAPTER 2. COMMAND LINE INTERFACE 21

With no arguments, the step command executes one instruction of the PIC code. If a

numeric argument is given, this specifies a fixed number of instructions to simulate.

The specific word “over” as an argument to step tells gpsim to run everything involved

in the current instruction. This would normally be used on a CALL instruction, in

which case the whole subroutine runs and the simulation stops after it returns.

2.19 symbol

symbol [symbol_name [symbol_type value]]

The symbol command is used to query and define symbols. If no options are specified,

the whole symbol table is displayed. The creation of user defined symbols is limited at

this time (see the online help for the current state of this command).

2.20 stimulus

stimulus [[type] options]

The stimulus command creates a signal that can be tied to a node or an attribute. If no

options are specified then all currently defined stimuli are displayed.

Note that in most cases it is easier to create a stimulus file then to type the command

by hand.

initial_state state at the start and at the rollover

start_cycle simulation cycle when the stimulus will begin

period stimulus period

name specifies the stimulus name

Here’s an example of a stimulus that will generate two pulses and repeat this in 1000

cycles.

stimulus asynchronous_stimulus

The initial state AND the state the stimulus is when

it rolls over

initial_state 0

start_cycle 0

the asynchronous stimulus will roll over in ’period’

cycles. Delete this line if you don’t want a roll over.

period 1000

{ 100, 1,

200, 0,

300, 1,

400, 0

CHAPTER 2. COMMAND LINE INTERFACE 22

}

Give the stimulus a name:

name two_pulse_repeat

end

A stimulus can be queried by typing its name at the command line:

gpsim> two_pulse_repeat

two_pulse_repeat attached to pulse_node

Vth=0V Zth=250 ohms Cth=0 F nodeVoltage= 7.49998e-07V

Driving=0 drivingState=0 drivenState=0 bitState=0

states = 5

100 1

200 0

300 1

400 0

1000 0

initial=0

period=1000

start_cycle=0

Next break cycle=100

Even though this example uses 1’s and 0’s for the data, one can use integers, floating

point numbers, or expressions instead. Integers are useful for supplying a stimulus to

an attribute. Expressions are useful for abstracting the data. See Chapter 7 for more

discussion and examples of stimuli.

2.21 stopwatch2

A timer for monitoring and controlling the simulation.

The units are in simulation cycles.

stopwatch.rollover - specifies rollover value.

stopwatch.direction - specifies count direction.

stopwatch.enable - enables counting if true.

Without any options, stopwatch will display the contents of the stopwatch timer. stop-

watch is writable, so you may initialize it to whatever value you like. The behavior

of the timer may be manipulated via the three attributes. The .rollover attribute is the

number of cycles at which the stopwatch timer rolls over. The .direction and .enable

attributes are boolean types. When true, the .direction attribute will instruction the

stopwatch to count up.

2The stopwatch is really a collection of attributes and not a command. But the behavior is so similar to a

command that it has been included here.

CHAPTER 2. COMMAND LINE INTERFACE 23

2.22 trace

trace [dump_amount]

trace will print out the most recent "dump_amount" traces. If no dump_amount is

specified, then the entire trace buffer will be displayed.

2.23 version

version

Display gpsim’s version. Note, this command will probably get replaced by an attribute

with the same (or similar) name.

2.24 x

The x command is deprecated. It’s former use was to examine and modify memory.

The preferred way to do this now is with expressions. The help for x now indicates

this:

x examine command -- deprecated

Instead of the using a special command to examine and modify

variables, it’s possible to directly access them using gpsim’s

expression parsing. For example, to examine a variable:

gpsim> my_variable

my_variable [0x27] = 0x00 = 0b00000000

To modify a variable

gpsim> my_variable = 10

It’s also possible to assign the value of register to another

gpsim> my_variable = porta

Or to assign the results of an expression:

gpsim> my_variable = (porta ^ portc) & 0x0f

Chapter 3

Graphical User Interface

FIXME: We could use a few illustrations here!

gpsim also provides a graphical user interface that simplifies some of the drudgery

associated with the cli. It’s possible to open windows to view all the details about your

debug environment. To get the most out of your debugging session, you will want to

assemble your code with gpasm (the gnupic assembler) and use the symbolic .cod files

it produces.

3.1 Main window

3.1.1 Menus

File->Open .stc or .cod files.

File->Quit Quit gpsim

Windows->* Open/Close the windows.

3.1.2 Buttons

(These are also found as keyboard bindings in the source windows.)

Step Step one instruction

Over Step until pc is after next instruction

Finish Run to return address

Run Run continuously

Stop Stop execution

Reset Reset CPU

24

CHAPTER 3. GRAPHICAL USER INTERFACE 25

3.1.3 Simulation mode

This controls how gpsim simulates, and how the GUI updates.

Never Don’t ever update the GUI when simulating. This is the fastest

mode. You will have to stop simulation by pressing Ctrl-C in the

command line interface.

x cycles Update the GUI every x cycles simulated.

every cycle Update the GUI every cycle. (you see everything, if you have filled

up on coffee :-)

x ms animate Here you can slow down simulation with a delay between every

cycle.

realtime This will make gpsim try to synchronize simulation speed with wall

clock time.

3.2 Source Browsers

gpsim provides two views of your source: ’.asm’ and ’.obj’ browsers. The ’.asm’

browser is a color coded display of your pic source.

3.2.1 .asm Browser

When a .cod file with source is loaded, there should be something in this display.

(TODO: add section about high level debugging).

There is an area to the left of the source, where symbols representing the program

counter, breakpoints, etc are displayed. Double clicking in this area toggles break-

points. You can drag these symbols up or down in order to move them and change the

PC or move a breakpoint.

A right button click on the source pops up a menu with six items (the word ’here’ in

some menu items denote the line in source the mouse pointer was on when right mouse

button was clicked.):

Menu item Description

Find PC This menu item will find the PC and changed page tab and scroll the

source view to the current PC.

Run here This sets a breakpoint ’here’ and starts running until a breakpoint is

hit.

Move PC here This simply changes PC to the address that line ’here’ in source has.

Breakpoint here Set a breakpoint ’here’.

CHAPTER 3. GRAPHICAL USER INTERFACE 26

Profile start here Set a start marker for routine profiling here.

Profile stop here Set a stop marker. (See the section for the profiling window.)

Select symbol. This menu item is only available when some text is selected in the

text widget. What it does is search the list of symbols for the selected

word, and if it is found it is selected in the symbol window. Depend-

ing of type of symbol other things are also done, the same thing as

when selecting a symbol in the symbol window:

• If it is an address, then the opcode and source views display the

address.

• If it’s a register, the register viewer selects the cell.

• If it’s a constant, address, register or ioport, it is selected in the

symbol window.

Find text This opens up a search dialog. Every time you hit the ’Find’ button,

the current notebook page is found and the source in that page is

used.

Settings A dialog with which you can change the fonts used.

Controls A submenu containing the simulation commands. (these are also

found as keyboard bindings (recommended), or in the main window.)

These are the keyboard bindings:

Key command

s,S,F7 Step one instruction.

o,O,F8 Step over instruction

r,R,F9 Run continuously.

Escape Stop simulation.

f,F Run to return address

1..9 Step n instructions

ctrl-f Find text

3.2.2 Opcode view - the .obj Browser

This window has two tabs. One with each memory cell on one line and information

about address, hexadecimal value and decoded instruction (i.e. disassembly), and one

with the program memory

displayed with sixteen memory cells per row and a configurable ASCII column.

CHAPTER 3. GRAPHICAL USER INTERFACE 27

The Assembly tab you can:

• Double click on a line to toggle breakpoints.

• Right click to get a menu where the breakpoint can be set or cleared on the

selected line.

• Under ’Settings’ you can change the font.

The Opcode tab.

Here the program memory is ordered as columns of sixteen memory cells per column

and as many row as needed to contain all memory.

The seventeenth column contains an ASCII representation of the program memory.

You can change font with the menu item ’Settings’.

The breakpoints can be set or cleared on one or more (drag the mouse to select more

cells) addresses with the right click menu.

3.3 Register views

There are two similar register windows. One for the RAM and one for the EEPROM

data, when available.

Here you see all registers in the current processor. Clicking on a cell displays it’s name

and value above the sheet of registers. You can change values by entering it in the entry

(or in the spreadsheet cell).

The following things can be done on one register, or a range of registers. (Selecting

a range of registers is done by holding down left mouse button, moving cursor, and

releasing button.)

• Set and clear breakpoints. Use the right mousebutton menu to pop up a menu

where you can select set read, write, read value and write value breakpoints. You

can also "clear breakpoints", notice the s in "clear breakpoints", every breakpoint

on the registers are cleared.

• Set and clear logging of registers. You can log reads, writes, reads/writes of

specific values and to bits selected by a specified mask. You can select a different

file name with ’set log filename...’. Default is "gpsim.log". You can choose LXT

or ASCII format. LXT can be read with the program gtkwave. ASCII is default.

• Copy cells. You copy cells by dragging the border of the selected cell(s).

• Fill cells. Move mouse to lower right corner of the frame of the selected cell(s),

and drag it. The one cell’s contents will be copied to the other cells.

• Watch them. Select the "Add Watch" menu item.

CHAPTER 3. GRAPHICAL USER INTERFACE 28

The cells have different background colors depending on if they represent:

• File Register (e.g. RAM): light cyan.

• Special Function Registers (e.g. STATUS,TMR0): dark cyan

• aliased register (e.g. the INDF located at address 0x80 is the same as the one

located at address 0x00): gray

• invalid register: black. If all sixteen registers in a row are invalid, then the row is

not shown.

• a register with one or more breakpoints: red. Logged registers are also red.

gpsim dynamically updates the registers as the simulation proceeds. Registers that

change value between updates of the window during simulation are highlighted with a

blue foreground color.

The menu also has a ’settings’ item where you can change the font used.

3.4 Symbol view

This window, as its name suggests, displays symbols. All of the special function reg-

isters will have entries in the symbol viewer. If you are using .cod files then you will

additionally have file registers (that are defined in cblocks), equates, and address labels.

You can filter out some symbol types using the buttons in the top of the window, and

you can sort the rows by clicking on the column buttons (the ones reading ’symbol’,

’type’ and ’address’).

You can add the symbol to the watch window by right-clicking and selecting the "Add

to watch window" menu item. This will add the ram register with address equal to the

symbols value to the watch window.

The symbol viewer is linked to the other windows. For example, if you click on a

symbol and:

• If it is an address, then the opcode and source views display the address.

• If it’s a register, the register viewer selects the cell.

3.5 Watch view

This is not a output-only window as the name suggests (change name?). You can both

view and change data. Double-clicking on a bit toggles the bit. You add variables

here by marking them in a register viewer and select “Add watch” from menu. The

right-click menu has the following items:

• Remove watch

CHAPTER 3. GRAPHICAL USER INTERFACE 29

• Set register value

• Clear Breakpoints

• Set break on read

• Set break on write

• Set break on read value

• Set break on write value

• Columns...

"Columns...” opens up a window where you can select which of the following data to

display:

• BP

• Type

• Name

• Address

• Dec

• Hex

• Bx (bits of word)

You can sort the list of watches by clicking on the column buttons. Clicking twice sorts

the list backwards.

3.6 Stack viewer

This window displays current stack. Selecting an entry makes the code windows dis-

play the return address. Double clicking sets a breakpoint on the return address.

3.7 Breadboard

Here you can create/modify and examine the environment around the pic. Pins are

displayed as an arrow. The direction of the arrow indicates if its an input or output pin.

The color of the arrow indicates its state (green=low, red=high).

You can’t instantiate pic processors from here, you will have to do that from the com-

mand line, or from a .stc file.

CHAPTER 3. GRAPHICAL USER INTERFACE 30

Your can create nodes by clicking on the "new node" button. (A node is ’a piece of

wire’ to which you can connect stimulus.) You can see the list of created nodes under

the "nodes" item in the upper-left tree widget.

You can create connections to nodes by clicking on a pin, and then clicking on the

button "Connect stimulus to node". This will bring up a list of nodes. Choose one by

double-clicking on the one you like.

If you click on a pin that is already connected to a node, then you will see the node and

its connections in the lower left part of the window. You can disconnect a stimulus by

clicking on it and pressing the "remove stimulus" button.

When you want to add a module to the simulation, you first have to specify the library

which contains the module you want. Click on the "add library" button and enter

the library name (e.g. "libgpsim_modules.so"). Now you can click the "add module"

button. Select the module you want from the list by double-clicking on it. Enter a

name for the module (this has to be unique, and not used before). You now have to

position the module. Move the mouse pointer to where you would like the module, and

left-click.

If you middle-click on a pin, you will see how the pin is connected. Press the "trace

all" to see all at

once, and "clear traces" to remove all (you will only remove the graphical trace, not

the connection!). If the tracing doesn’t work, try moving the packages so that there are

more space around the pins.

When you are done, you can save by clicking the "save configuration" button. You can

then load this file from the command line like this (assuming the .cod file with your

source is called "mycode.cod", and the file you just saved was called "mynets.stc":

gpsim -s mycode.cod -c mynets.stc

You can’t load only the .stc file since this doesn’t contain the processor type and code.

You can create (with an editor) your own .stc file (e.g. my_project.stc) and in that file

put a command "load c mynets.stc" after you have loaded the .cod file. You then only

have to load this file (gpsim -c my_project.stc).

3.8 Trace viewer

This window shows the trace of instructions executed. See 6.

3.9 Profile viewer

This window show execution count for program memory addresses. The profile win-

dow must be opened before starting simulation, because the tracing is not enabled by

default.

CHAPTER 3. GRAPHICAL USER INTERFACE 31

Instruction profile

This shows the number of times each instruction are executed.

Instruction range profile

Here you can group ranges of instruction into one entry.

The right click menu contains:

Remove range Remove an entry.

Add range... Open a dialog from where you can add a range of instructions as

an entry.

Add all labels Add all code labels as ranges.

Snapshot to plot Open a window containing a graph of the data. From this new

window you can also save (postscript) or print it.

Register profile

This shows the number of reads or writes the simulator does on register.

Routine profile

Here you can see statistics about execution time for a selected routine. You mark the

entry and exit points from the source browser (profile start/stop). If the routine you

want to measure have multiple entry and/or exit points, then you have to put a marker

on every entry point as well as (and especially) every exit point. Otherwise you will

get bad data.

When you have done that, gpsim will (as simulation goes by) store the execution times

of that routine and calculate min/max/average/etc. You can also use the menu item

’Plot distribution’ to open a window displaying a histogram of the data. From this new

window you can also save (in postscript) or print it.

You can also measure call period by switching the ’entry’ and ’exit’ points. If also

want the time from reset (or some equal point) to the first ’entry’, then you must also

put an ’entry’ point there.

3.10 Stopwatch

The stopwatch window shows a cycle counter and a re-settable counter. The cycle

counter is the same as the one in the register window. It basically counts instructions.

The other counter counts at the same rate as the cycle counter, but can be cleared by

clicking the "clear" button (or preset by entering a number in the entry box).

CHAPTER 3. GRAPHICAL USER INTERFACE 32

The up/down indicator denotes the direction the counter counts.

The rollover value specifies the range the cycle counter can be in (a modulo counter).

For example, if the rollover value is specified to be 0x42, then whenever the resettable

counter reaches 0x42 it will rollover to zero. If the counter is counting down, then

when it reaches 0 the next state will be 0x41. If you don’t want is like this, then set the

rollover value to something large.

3.11 Scope Window

FIXME: The scope window still needs some work...

The Scope Window graphs I/O pin states. It is similar to an oscilloscope or logic

analyzer. It can be controlled either from the command line or from the GUI. Currently

only the digital state of I/O pins are supported.

To use the scope window, each scope channel being used must first be connected to the

stimulus being tracked. This can only be done on the command line (or via the .sim

directive in the .asm file). The following example shows how this is done, but note that

in the .sim command the ’”’s need to be escaped with a ’\’.

**gpsim> scope.ch0 = “portc3”

**gpsim> scope.ch1 = “portc4”

Once the data are captured, the scope window display may need to be altered to better

see the data. In the GUI, the following keys can be used:

z Zoom In

Z Zoom out

l Pan left

r Pan right

In the command line, zooming and panning can be achieved by modifying the scope.start

and scope.end variables.

Chapter 4

Scripting and Configuring

gpsim does not have a native scripting language per se. However it is possible to place

gpsim commands into a file and load them later. This is useful for loading modules and

stimuli and connecting various devices together. By convention, gpsim’s configuration

files have the extension .stc, for startup configuration.

4.1 Embedded Commands

If you’re using gputils, it is possible to embed configuration commands directly into

your PIC assembly source. The gputils supplied include file coff.inc contains several

macros that embed simulation command into a COFF and COD files.

4.1.1 .sim macro

; Simulator Command

.sim macro x

.direct "e", x

endm

The .sim macro allows gpsim configuration commands to be embedded in

the PIC source. While gpsim loads a .cod file, the commands in the

.sim macros are collected. After the .cod file is loaded, the commands

are redirected to gpsim’s command line interpreter in the order they

were received.

Here’s an example of switch module being loaded and configured:

;# Module libraries:

.sim "module library libgpsim_modules"

.sim "module load switch SW1"

.sim "SW1.state=false"

33

CHAPTER 4. SCRIPTING AND CONFIGURING 34

.sim "SW1.xpos = 216.0"

.sim "SW1.ypos = 156.0"

.sim "SW1.Ropen = 1.0e8"

This loads gpsim’s module library, instantiates a switch module, and configures the

switch’s attributes.

4.1.2 .command macro

.command macro x

.direct "c", x

endm

The .command macro is similar to a .sim macro except that it associates

a gpsim command with a particular instruction. This is useful for

changing attribute values at different points of the program.

4.1.3 .assert macro

; Assertion

.assert macro x

.direct "a", x

endm

The .assert macro provides a source code mechanism for setting breakpoints (see chap-

ter 5). An assertion is an expression associated with a specific instruction. It essentially

means, “If the expression at this instruction evaluates to false, then halt the simulation.”

; Close the switch. Because of capacitance, portc1 will go high after a delay:

; R=145, C=4.2e-6 TC=6.11e-4 or 1527 cycles, 0-2 volts requires 0.51 Tc

.command "SW1.state=closed"

nop

; portc0 should be same as portc1

.assert "(portc & 3) == 0, \"SW1 closed, cap holds low\""

nop

In this example, the .command macro writes to the switch module’s .state attribute (see

section 8.1.4). Just prior to executing the first nop instruction, the switch will be closed.

The .assert macro at the very next instruction makes sure that the expected state is seen

on PORTC.

CHAPTER 4. SCRIPTING AND CONFIGURING 35

4.2 Sockets

gpsim supports a socket interface. This is inhibited by default. Advanced users may

wish to study code in the examples/scripts subdirectory. This code is not distributed

and is only available in the subversion repository.

Chapter 5

Assertions and Extended

Breakpoints

gpsim supports a wide variety of breakpoints and assertions. Many of these were de-

scribed with the break command. This section will illustrate how to extend the break

command even further and introduce simulation assertions.

Breakpoint Messages

A breakpoint message is an ASCII string that is displayed whenever a breakpoint is

encountered. Any break point can have an associated message. The syntax at the

command line is

break conditions, “This is a breakpoint message”

The conditions are described above in the break command and are the conditions under

which the break occurs.

Breakpoint messages are useful for distinguishing among many different breakpoints.

break w counter & 0xf0 == 0x80, “Counter overflowed!”

In this example, the user is monitoring the upper nibble of the variable counter and

breaking whenever it is equal to 8. When the command is entered, gpsim will display:

break when bit pattern 1000XXXX is written to register counter(0x26). break #: 0x20

The breakpoint can be queried with the break command:

gpsim> break 32

32: p18f452 register write value: [0x26] & 0xf0 == 0x8

Message:Counter overflowed!

When the simulation encounters the break, execution halts and the message is printed.

36

CHAPTER 5. ASSERTIONS AND EXTENDED BREAKPOINTS 37

5.1 Assertions and Embedded Simulation commands

gpsim’s breakpoint design is a powerful tool that can catch many problems. The as-

sertion design extends this power even further. An assertion is like a breakpoint that is

defined in the program source code for a particular instruction. gpsim reads the break-

point from a special message area in the .cod file. For example, you may have a routine

that requires BANK 0 be selected. A gpsim assertion can be placed at the entry of the

routine to verify that this is the case.

.assert "(status & 0x60) == 0, \"Bank 0 must be selected!\""

The syntax is identical to the extended breakpoint command. The expression is the

condition that is checked. If the expression evaluates to false, then the code halts and

prints the message. The .assert is a macro that is part of gputils. It requires a string

as its input argument. Notice that the assertion message is embedded in the argument.

gpasm and MPASM copy C’s method of placing a backslash in front of quotations that

are part of a string.

Command Assertions

A command assertion is a gpsim associated with a particular instruction in your PIC

source code. These are useful for changing the behavior of the simulation based on

where the code executes. Almost any gpsim command can be placed in a command

assertion. However, the most useful ones are assignment commands. For example:

.command “SW1.state = open”

This assignment writes to the state attribute of a switch module named SW1.

Chapter 6

Trace and Log: What has

happen?

Inspecting the current state of your program is sometimes insufficient to determine the

cause of a bug. Often times it’s useful to know the conditions that led up to the current

state. gpsim provides a history or trace of everything that occurs - whether you want it

or not - to help you diagnose these otherwise difficult to analyze bugs.

What’s traced notes

program counter addresses executed

instructions opcode

register read value and location

register write value and location

cycle counter current value

skipped instructions addresses skipped

status register during implicit modification

interrupts

break points type

resets type

The ’trace’ command will dump the contents of the trace buffer.

A large circular buffer (whose size is hard coded) stores the information for the trace

buffer. When it fills, it will wrap around and write over the old history. The contents

of the trace buffer are parsed into frames, where one frame corresponds to a simulation

cycle.

Here’s an example of a trace output:

38

CHAPTER 6. TRACE AND LOG: WHAT HAS HAPPEN? 39

gpsim> trace

0x00000000000026F6 p18f452 0x001C 0x1003 iorwf reg3,w,0

Read: 0x00 from reg3(0x0003)

Wrote: 0xE7 to W(0x0FE8) was 0xE7

Wrote: 0x18 to status(0x0FD8) was 0x18

0x00000000000026F7 p18f452 0x001E 0xE1F4 bnz $-0x16 ;(0x8)

0x00000000000026F8 p18f452 0x0008 0x3E00 incfsz reg,f,0

Read: 0xE4 from reg(0x0000)

Wrote: 0xE5 to reg(0x0000) was 0xE4

0x00000000000026F9 p18f452 0x000A 0xD004 bra $+0xa ;(0x00014) 0x00000000000026FA p18f452

0x00000000000026FB p18f452 0x0016 0x5000 movf reg,w,0

Read: 0xE5 from reg(0x0000)

Wrote: 0xE5 to W(0x0FE8) was 0xE7

Wrote: 0x18 to status(0x0FD8) was 0x18

0x00000000000026FC p18f452 0x0018 0x1001 iorwf reg1,w,0

Read: 0x03 from reg1(0x0001)

Wrote: 0xE7 to W(0x0FE8) was 0xE5

Wrote: 0x18 to status(0x0FD8) was 0x18

Each trace frame begins with a new simulation cycle. Typically this will include a

simulated instruction. Here’s each of the fields:

64-bit simulation cycle processor PC opcode instruction

0x00000000000026F6 p18f452 0x001C 0x1003 iorwf reg3,w,0

Other events that occur during the trace frame are indented. Typically these will be

register read or write traces. The read traces show the value read. Write traces show

the value written and the value that was previously in the register.

Saving Trace to a file

The trace buffer may contain thousands of entries making it difficult to search. The

trace save feature will allow the trace buffer to be written to a file.

gpsim> trace save mytrace.log

The entire contents of the trace buffer are decoded and written to the file. The format

of the trace is the same as it is when displayed at the command line.

Raw Traces

The raw trace buffer is the trace buffer displayed in a minimally decoded form. This

is primarily used for gpsim development. When saved to a file, the raw trace is not

CHAPTER 6. TRACE AND LOG: WHAT HAS HAPPEN? 40

decoded at all. In addition, the processor’s state is written to the file. Thus third party

tools can be written to create custom trace reports1.

1FIXME - The dynamically created trace type information needs to be written to this file too. Without it,

it is difficult to tell what each traced item is.

Chapter 7

Simulating the Real World:

Stimuli

Stimuli are extremely useful, if not necessary, for simulations. They provide a means

for simulating interactions with the real world.

The gpsim stimuli capability is designed to be accurate, efficient and flexible. The

models for the PIC’s I/O pins mimic the real devices. For example, the open collector

output on port A of a PIC16C84 can only drive low. Multiple I/O pins may be tied to

one another so that the open collector on port A can get a pull up resistor from port B.

The overhead for stimuli only occurs when a stimulus changes states. In other words,

stimuli are not polled to determine their state.

Analog stimuli are also available. It’s possible to create voltage references and sources

to simulate almost any kind of real world thing. For example, it’s possible to combine

two analog stimuli together to create signals like DTMF tones.

Note, however, that gpsim does not attempt to be a full electronic circuit simulator, and

certain approximations made for efficiency will cause inaccuracy in complex simula-

tion environments.

7.1 How They Work

In the simplest case, a stimulus acts a source for an I/O pin on a PIC. For example,

you may want to simulate a clock and measure its period using TMR0. In this case,

the stimulus is the source and the TMR0 input pin on the pic is the load. In gpsim you

would create a stimulus for the clock using the stimulus command and connect it to the

I/O pin using the node command.

In general, you can have several ’sources’ and several ’loads’ that are interconnected

with nodes1. A good analogy is a spice circuit. The spice netlist corresponds to a

1Although, gpsim is currently limited to ’one-port’ devices. In other words, it is assumed that ground
serves as a common reference for the sources and the loads.

41

CHAPTER 7. SIMULATING THE REAL WORLD: STIMULI 42

node-list in gpsim and the spice elements correspond to the stimuli sources and loads.

This general approach makes it possible to create a variety of simulation environments.

Here’s a list of different ways in which stimuli may be connected:

1. Stimulus connected to one I/O pin

2. Stimulus connected to several I/O pins

3. Several stimuli connected to one I/O pin

4. Several stimuli connected to several I/O pins

5. I/O pins connected to I/O pins

The general technique for implementing stimuli is as follows:

1. Define the stimulus or stimuli.

2. Define a node.

3. Attach the stimuli to the node.

More often than not, the stimulus definition will reside in a file.

7.1.1 Contention among stimuli

One of the problems with this nodal approach to modeling stimuli is that it’s possible

for contention to exist. For example, if two I/O pins are connected to one another and

driving in the opposite directions, there will be contention. gpsim resolves contention

with attribute summing. Each stimulus - even if it’s an input - has an effect on the node.

This effect is characterised by a voltage and an impedance. When a node is updated,

gpsim performs a Thevenin voltage summing of all the stimuli together. The resultant

voltage is then propagated to all connected stimuli as the current state of the node.

For example, in the port A open collector / port B weak pull-up connection example,

gpsim assigns a voltage of 5V with an impedance of 20kohms to the pull up resistor,

and a voltage of 0V with an impedance of 150ohms to the open collector if it is active,

or 100Mohms if it’s not driving. The Thevenin sum will be roughly 0.05V if the output

is driving, or 5V otherwise. Capacitive effects are not currently supported.

7.2 I/O Pins

gpsim models I/O pins as stimuli. Thus anywhere a stimulus is used, an I/O pin may

be substituted. For example, you may want to tie two I/O pins to one another; like a

port B pull up resistor to a port A open collector. gpsim automatically creates the I/O

pin stimuli whenever a processor is created. All you need to do is to specify a node and

then attach the stimuli to it. The names of these stimuli are formed by concatenating

CHAPTER 7. SIMULATING THE REAL WORLD: STIMULI 43

the port name with the bit position of the I/O pin. For example, bit 3 in port B is called

portb3.

Here’s a list of the types of I/O pin stimuli that are supported:

I/O Pin Type Function

INPUT_ONLY Only accepts input (like MCLR)

BI_DIRECTIONAL Can be a source or a load (most I/O pins)

BI_DIRECTIONAL_PU PU=Pullup resistor (PORTB)

OPEN_COLLECTOR Can only drive low (RA4 on c84)

There is no special pin type for analog I/O pins. All pic analog inputs are multiplexed

with digital inputs. The I/O pin definition will always be for the digital input. gpsim

automatically knows when I/O pin is analog input.

7.3 Asynchronous Stimuli

Asynchronous stimuli are analog or digital stimuli that can change states at any given

instant (limited to the resolution of the cycle counter). They can be defined to be

repetitive too.

parameter function

start_cycle The # of cycles before the stimulus starts

cycles[] An array of cycle #’s

data[] Stimulus state for a cycle

period The # of cycles for one period

initial_state The initial state before data[0]

When the stimulus is first initialized, it will be driven to the ’initial state’ and will

remain there until the cpu’s instruction cycle counter matches the specified ’start’ cycle.

After that, the two arrays ’cycles[]’ and ’data[]’ define the stimulus’ outputs. The

size of the arrays are the same and correspond to the number of events that are to be

created. So the event number, if you will, serves as the index into these arrays. The

’cycles[]’ array define when the events occur while the ’data[]’ array defines the states

the stimulus will enter. The ’cycles[]’ are measured with respect to the ’start’ cycle.

The asynchronous stimulus can be made periodic by specifying the number of cycles

in the ’period’ parameter.

Here’s an example that generates three pulses and then repeats:

stimulus asynchronous_stimulus # or we could have used asy

The initial state AND the state the stimulus is when

CHAPTER 7. SIMULATING THE REAL WORLD: STIMULI 44

it rolls over

initial_state 1

all times are with respect to the cpu’s cycle counter

start_cycle 100

the asynchronous stimulus will roll over in ’period’

cycles. Delete this line if you don’t want a roll over.

period 5000

Now the cycles at which stimulus changes states are

specified. The initial cycle was specified above. So

the first cycle specified below will toggle this state.

In this example, the stimulus will start high.

At cycle 100 the stimulus ’begins’. However nothing happens

until cycle 200+100.

{ 200, 0,

300, 1,

400, 0,

600, 1,

1000, 0,

3000, 1 }

Give the stimulus a name:

name asy_test

Finally, tell the command line interface that we’re done

with the stimulus

end

7.3.1 Analog Asynchronous Stimuli

Analog Asynchronous Stimuli are identical to Synchronous Stimuli except the data

points are floating point numbers.

7.4 Extended Stimuli

Discuss the extended stimuli in the modules/ directory. In particular, describe the

PulseGen module and how it can complete replace the asynchronous stimuli. Also

describe the PullUp and PullDown modules and how they can be manipulated into be-

ing general purpose DC voltage sources (FIXME, would it make sense to rename these

modules?).

7.5 Limitations of the Stimulus Mechanism

The simulation of external devices using gpsim stimuli and nodes is intended to assist

in PIC software debugging, not electronic circuit design. As such it takes a simplified

approach to certain things.

CHAPTER 7. SIMULATING THE REAL WORLD: STIMULI 45

7.5.1 Propagation Delays

gpsim makes no attempt to simulate propagation delays in the circuit. Usually this is

not a problem. However, when using modules8 to expand gpsim’s environment, it is

possible to create situations where it matters. For example, daisy-chaining two or more

shift registers with a shared clock relies on the propagation delay of the first register to

ensure the second shifts the correct data in. Since gpsim does not simulate this delay,

the results may be wrong2.

2They may be right, it depends on execution order, which is subtle.

Chapter 8

Modules

gpsim has been designed to debug microprocessors. However, microprocessors are

always a part of a system. And invariably, the bugs one often encounters are those

that are a result of interfacing with a system. Modules provide users with a way to

extend gpsim and simulate a system. For example, the system may be a processor with

a few pull up resistors and switches or it may be a processor and an LCD display.

gpsim provides a few modules that one may use either for debugging or as templates

for creating new modules.

Note that gpsim’s modules are provided to facilitate debugging of the PIC code, not the

hardware. gpsim does not attempt to be a circuit simulator by itself. If you need that

functionality, the gpsim core can be embedded into third party simulators.

Modules reside in a library and are dynamically loaded with the module command.

All modules have I/O pins which can connect to other modules or processors. Most

modules provide attributes that allow the user to control a module’s behavior or query

its internal state. For example, the USART module has transmit and receive baud rate

attributes that may be configured:

gpsim> U1.txbaud = 9600 # set the transmit rate

gpsim> U1.rxbaud # query the receiver rate

9600

The symbol command can be used to query all attributes of a module.

gpsim> symbol U1. # note the period

U1 = USARTModule

U1.console = false

U1.crlf = true

U1.loop = true

U1.rx = 0

U1.rxbaud = 9600

U1.tx = 0

46

CHAPTER 8. MODULES 47

U1.txbaud = 9600

U1.xpos = 72.00000000000000

U1.ypos = 276.0000000000000

Modules may provide help which can be accessed using the help command:

gpsim> help U1

USARTModule

no description

Well, the USART module isn’t the best example here! However, a better example is

one of the USART attributes.

gpsim> help U1.txbaud

9600

USART Module Transmitter baud rate

8.1 gpsim Modules

gpsim provides a library of useful modules for simulation. The current version includes

the following modules:

pushbutton

pullup A resistor connected (nominally) to Vdd

pulldown A resistor connected (nominally) to Vss

usart A serial interface with a GUI terminal window

pulsegen

I2C-EEPROM2K A 256 byte I2C serial EEPROM like the 24LC024.

I2C-EEPROM16K A 2k byte I2C serial EEPROM like the 24LC16B.

I2C-EEPROM256K A 32k byte I2C serial EEPROM like the 24LC256.

i2c2par A slave I2C device with an 8 bit I/O port

switch Switch, which connects two nodes together

and2 2-input logical AND gate

or2 2-input logical OR gate

xor2 2-input logical XOR gate

not Inverter (logical NOT gate)

led_7segments A 7-segment LED digit

led A single pin LED which can be active either high or low

TTL377 A 74xx377 style 8-bit tristate latch

TTL165 A 74xx165 parallel-in-serial-out shift register

TTL595 A 74xx595 serial-in-parallel-out shift register

CHAPTER 8. MODULES 48

8.1.1 USART

The USART module is a full duplex configurable USART. In graphics mode, the US-

ART will display its output in a console. In addition, the console will accept keyboard

input.

Attributes

.tx - The .tx attribute is the USART transmit register. Data written to this attribute will

initiate a transmission. The USART supports a transmit FIFO, making it possible to

stuff several bytes into the transmit queue while the program under test is paused.

.rx - The .rx attribute is the USART receiver register. Data received by the USART is

available for querying through here.

.txbaud - The .txbaud attribute specifies the transmitter baud rate.

.rxbaud - The .rxbaud attribute specifies the receiver baud rate.

.console - When set to true, the console window will display received data and will

accept keyboard entries for the transmitter.

.crlf - When set to true, carriage returns and line feeds generate new lines in the console

window.

.hex - When set to true, the data is assumed to be binary and all bytes are shown in hex.

.loop - When set to true, received characters are looped back to the transmitter.

.xpos - horizontal position in breadboard window.

.ypos - vertical position in breadboard window.

I/O Pins

.TXPIN - transmit pin

.RXPIN - receiver pin

.CTS - Clear to send pin. This can be left unconnected

.RTS - Request to send pin.

8.1.2 Logic

The only attributes supported be the logic devices are the standard .xpos and .ypos

breadboard positions. FIXME There should be attributes to specify the switching char-

acteristics.

and2 - Two input AND gate

I/O pins

.in0 - First input

CHAPTER 8. MODULES 49

.in1 - First input

.out - Output

or2 - Two input OR gate

.in0 - First input

.in1 - First input

.out - Output

xor2 - Two input XOR gate

.in0 - First input

.in1 - First input

.out - Output

not - Inverter

.in0 - Input

.out - Output

TTL377 - Octal Latch

The TTL377 module simulates an 8-bit parallel latch with output enable. It latches

all bits simultaneously so that connecting an output to an input gives correct results.

However, this is not guaranteed where multiple modules are so connected.

.D0..7 - Input

.Q0..7 - Output

.E - output enable

.CP - clock (rising edge)

TTL165 - Parallel to Serial Shift Register

The TTL165 module simulates an 8-bit parallel input serial output shift register. It is

particularly useful for connecting to a SPI peripheral. Note, however, that the common

practice of daisy-chaining such shift registers is not guaranteed to simulate correctly.

.D0..7 - parallel input

.Ds - daisy-chain serial input

.Q7 - output

.nQ7 - inverted output

.CE - clock enable

.CP - clock (rising edge)

.PL - parallel load

CHAPTER 8. MODULES 50

TTL595 - Serial to Parallel Shift Register

The TTL595 module simulates an 8-bit serial input parallel output shift register. It is

particularly useful for connecting to a SPI peripheral. Note, however, that the common

practice of daisy-chaining such shift registers is not guaranteed to simulate correctly.

.Q0..7 - parallel output

.Ds - serial input

.Qs - daisy-chain serial output

.OE - output enable

.SCK - shift clock (rising edge)

.RCK - output latch clock (rising edge)

.MR - master reset

8.1.3 I2C EEPROM

There are currently three I2C EEPROMs supported: I2C-EEPROM2k, I2C-EEPROM16k,

and I2C-EEPROM256K.

The commands ’dump e module_name filename’ and ’load e module_name filename’

can be used to save and restore the contents of the EEPROM module. This allows the

contents of the EEPROM to be preserved between runs of gpsim.

The cells of the EEPROM can be examined and modified using the command interface

with the commands ’module_name.eeData[index]’ and ’module_name.eeData[index]

= new_value’. The following example shows loading an EEPROM module, setting cell

16 to ’0’ (0x30) and checking that the new value was written.

**gpsim> module load I2C-EEPROM16k e2

**gpsim>

**gpsim> e2.eeData[16] = $30

**gpsim> e2.eeData[16]

e2.eeData[$10] = $30

**gpsim>

I/O Pins

.A0 - Chip select to set bit 0 of slave address

.A1 - Chip select to set bit 1 of slave address

.A2 - Chip select to set bit 2 of slave address

.SCL - I2C serial clock

.SDA - I2C serial data

.WP - Hardware write protect

CHAPTER 8. MODULES 51

8.1.4 Switches & Resistors

The switch module is a model of a simple two terminal switch. It may be controlled

either from the command line or the breadboard GUI. The switch module’s open and

closed resistance are controlled by attributes. Thus a two terminal resistor can be mod-

eled as a switch that is always closed (or open).

Attributes

.Ropen - Switch resistance in ohms when the switch is opened.

.Rclosed - Switch resistance in ohms when the switch is closed.

.state - Switch state. The switch state takes the values of open or closed, although

false for open and true for closed is supported for backward compatibility. The .state

attribute is writable.

I/O Pins

.A - One side

.B - The other side

8.1.5 Voltage Sources, Resistors, and Capacitors

The pullup and pulldown modules are two terminal devices with one terminal tied to

a voltage source. Their voltage, resistance, and pin capacitance are controllable via

attributes.

Attributes

.voltage - DC voltage

.resistance - resistance in ohms between the I/O pin and the voltage source.

.capacitance - capacitance in farads between the I/O pin and ground.

I/O Pins

.pin - the only pin exposed.

8.1.6 LED_7SEGMENTS and LED

led_7segments - 7 segment common cathode LED display

The segments are numbered as per the following figure.

CHAPTER 8. MODULES 52

5 | 0 | 1

4 | 6 | 2

3

I/O Pins

.cc - common cathode

.seg0 - segment 0

.seg1 - segment 1

.seg2 - segment 2

.seg3 - segment 3

.seg4 - segment 4

.seg5 - segment 5

.seg6 - segment 6

Led - Simple LED

The simple LED is a single pin module internally tied to either Vss or Vdd.By default

the LED is internally tied to Vdd(0V) and turns on when the pin is driven high.However,

by setting the ActiveState parameter to low, the LED is internally tied to Vss(5V) and

turns on when the pin is driven low.Like a real LED, the module will either sink or

source current from the driving line which may affect its logic level.

The LED color is by default red, but can be set to other colors.

Attributes

color - LED color, possible values red, green, yellow, orange or blue

ActiveState - LED active state mode, possible values: high or low

I/O Pin

.in - drives LED

8.1.7 I2C slave to Parallel port

The i2c2par is a 7 bit address I2C module with an 8 bit I/O port. The direction of the

I/O port is determined from I2C R/W̄ bit. When R/W̄ is zero the I/O port outputs the

data sent by the master device. Otherwise the port is set as an input port and when the

master device requests data, the port is read and transmitted to the master.

CHAPTER 8. MODULES 53

Attributes

.Slave_Address - I2C 7 bit device address

I/O Pins

.p0..7 - I/O pins

.SDA - I2C serial data

.SCL - I2c serial clock

8.2 Extras Modules

In addition to the standard modules, modules largely supplied by third parties are sup-

plied in the libgpsim_extras library.

Name Alias Description

dht11 dht11 Temperature and humidity sensor

DS1307 ds1307 64 x 8, Serial, I2C Real-Time Clock

DS1820 ds1820 High-Precision 1-Wire Digital Thermometer

DS18S20 ds18s20 High-Precision 1-Wire Digital Thermometer

DS18B20 ds18b20 High-Precision 1-Wire Digital Thermometer

lcd_display lcd_2X20 LCD - HD44780 2X20

lcd_20x4 lcd_20x4 LCD - HD44780 4x20

lcd_dt161A lcd_2X8 LCD - HD44780 2x8

LCD100X32 LCD100X32 LCD - SED1530 100x32

OSRAM128X64 OSRAM128X64 LCD - SSD0323 128x64

lcd_7Seg lcd_7seg LCD - 7 segment no controler

Solar Solar Solar Panel, Controler, Battery

8.2.1 Temperature and humidity sensor - DHT11

This module emulates the DHT11 temperature/humidity sensor using a single-wire

interface.

Attributes

temperature - Temperature degree C * 100

humidity - Relative humidity % * 100

I/O Pins

.pin - Serial I/O pin

CHAPTER 8. MODULES 54

8.2.2 64 x 8, Serial, I2C Real-Time Clock - DS1307

This module emulates the Dallas Semiconductor DS1307 Real-Time clock which also

has 56 x 8 eeprom memory and connects via an I2C serial bus.

I/O Pins

.SDA - Serial Data Line I/O pin

.SCL - Serial Clock Line I/O pin

.SQW - Square Wave Output

8.2.3 High-Precision 1-Wire Digital Thermometer - DS1820 Fam-

ily

These modules emulate the DS1820, DS18S20 and DS18B20 High-Precision 1-Wire

Digital Thermometers.These devices uses a single-wire bus interface.

Attributes

ROMCode - Device ROM code

temperature - Temperature of device

powered - Device is self powered

alarm_th - Temperature high alarm register

alarm_tl - Temperature low alarm register

config_register - Value of configuration register (ds18B20 only)

I/O Pins

.pin - Serial I/O pin

8.2.4 Character LCD - HD44780

The library libgpsim_lcd contains several LCD display formats using the HD44780

controller.

Name Description

lcd_display 20 col 2 row LCD

lcd_20x4 20 col 4 row LCD

lcd_dt161A 16 col 1 row LCD

CHAPTER 8. MODULES 55

I/O Pins

.DC - Data / command select

.RW - Read/Write select

.E - start data read/write

.d0-7 - data bus

8.2.5 Graphic LCD - SED1530

This module emulates a 100X32 pixel graphics LCD based on dual SED1350 con-

trollers.

8.2.6 LCD_7Seg

A 7 segment LCD display without a controller. If common > 2.5V, (cc- segn) > 1.4V

segment is on otherwise segment is off.

The segments are numbered as per the following figure.

5 | 0 | 1

4 | 6 | 2

3

I/O Pins

.cc - common

.seg0-6 - 7 segment drives

8.2.7 Solar

This module emulates a 20 Watt solar panel, a 20mah battery, and a PWM controler

for testing control strategies for the controler.

Attributes

Aoffset - Voltage on Asol pin for zero panel current

Ascale - Voltage/Amp panel current scale factor for Asol

VSscale - scale factor for Vsol pin

VBscale - scale factor for Vbat pin

inductor - controler inductor size in Henries

BDOC - Battery degree of charge %

CHAPTER 8. MODULES 56

I/O Pins

.Vsol - Solar Panel output Voltage

.Asol - Solar Panel output current

.Vbat - Battery Voltage

.PWM - Pulse Width Modulation signal

.OK - PWM is enabled

8.3 Writing new modules

A module is a library of code. On Windows the library is a .DLL and on Unix a shared

library. There are a few details that a module must adhere to, but in general the module

has full access to gpsim’s API.

The easiest way to write a new module is to start from the source code from one of

the existing modules. For example, suppose your project produces a serial bit-stream

in PPM coding and you want to display the output during the simulation. The external

module you need is similar to the usart module but not the same, so start by making a

copy of the usart module and then modify it to work how you need.

To be able to load your module into gpsim it needs to be in a library. Usually you will be

creating a new library just for one device, but sometimes you will have a few devices.

Either way, the library must declare to gpsim what devices it contains. This is achieved

with an array of Module_Types class instances, returned to gpsim by a function named

“get_mod_list”. All gpsim module libraries must declare this function. You can copy

the required template from the gpsim source – probably one of the “extras” modules is

slightly cleaner than the main library. For our PPM decoder example, we might have a

module_manager.cc containing the following code:

/* IN_MODULE should be defined for modules */

#define IN_MODULE

#include <stdio.h>

#include <gpsim/modules.h>

#include "ppm.h"

Module_Types available_modules[] =

{

{ "ppm_display", "ppm_rx_iface", PpmDisplay::construct},

// No more modules

{ NULL,NULL,NULL}

};

#ifdef __cplusplus

extern "C" {

#endif /* __cplusplus */

/***

* get_mod_list - Report all of the modules in this library.

CHAPTER 8. MODULES 57

*

* This is a required function for gpsim compliant libraries.

*/

Module_Types * get_mod_list(void)

{

return available_modules;

}

#ifdef __cplusplus

}

#endif /* __cplusplus */

This declares that this library provides one module, called ppm_display, implemented

by the C++ class PpmDisplay. The class which implements the module must provide a

static method “construct” to create a new instance of the class. For example:

Module * PpmDisplay::construct(const char *_new_name=0)

{

PpmDisplay *ppmd = new PpmDisplay(_new_name);

ppmd->create_iopin_map();

ppmd->create_window(_new_name);

return ppmd;

}

Your module will need to include stimuli for its I/O connections. You can use the stan-

dard gpsim stimulus classes: IOPIN, io_bidirectional, io_bidirectional_pu, io_open_collector.

In many cases, however, you will want to derive your own class from one of them. This

will allow you to customise the actions when the node state changes. For example:

class DecoderPin : public IOPIN

{

private:

PpmDisplay * Parent;

public:

DecoderPin (PpmDisplay * parent, unsigned int b, const char * name=0);

virtual void setDrivenState(bool new_state);

};

The only methods we provide here are the constructor and an overridden “setDriven-

State”. This is because our PPM decoder needs to be told when the input pin changes

state.

Chapter 9

Symbolic Debugging

gpsim maintains a symbol table.

<write me>

58

Chapter 10

Macros

<write me>

59

Chapter 11

Hex Files

The target code simulated by gpsim can be supplied by a hex file, or more specifically

an Intel Hex file. gpsim accepts the format of hex provided by gpasm and mpasm. The

hex file does not provide any symbolic information. It’s recommended that hex files

only be used if 1) you suspect there’s a problem with the way .cod files are generated

by your assembler or compiler OR 2) your assembler or compiler doesn’t generate

.cod files. Also, you must supply a processor when loading hex files. See the load

command.

60

Chapter 12

The ICD- Not Supported in

versions 0.21.0 and later

gpsim supports (partly) the first version of the ICD (as opposed to ICD2 (the round

hockey-puck shaped one)).

Special configuration of the code

Read the MPLAB ICD USER’s GUIDE.

Here’s the short version:

• disable at least: brown out detection, low voltage programming and all code

protection. It is probably good to turn of the watchdog too. see the MPLAB ICD

USER’s GUIDE for more information.

• have a NOP as the first instruction.

• Don’t touch RB6 or RB7.

• Don’t use the last stack level.

• Don’t use these registers and program words:

Processor Register Program

-870/1/2 0x70, 0xBB-0xBF 0x6E0-0x7FF

-873/4 0x6D, 0x1fD, 0xEB-0xF0, 0x1Eb-0x1F0 0xEE0-0xFFF

-876/7 0x70, 0x1Eb-0x1Ef 0x1F00-0x1FFF

icdprog

Download and install icdprog.

Use icdprog to program the target with the hex file (icdprog mycode.hex).

61

CHAPTER 12. THE ICD- NOT SUPPORTED IN VERSIONS 0.21.0 AND LATER62

ICD usage

Start gpsim like this:

gpsim -d /dev/ttyS0 -s mycode.cod

, assuming the ICD is connected to the first serial port.

Now you can type ’icd’ to see some information:

**gpsim> icd

ICD version "2.31.00" was found.

Target controller is 16F877 rev 13.

Vdd: 5.2 Vpp: 13.3

Debug module is present

2.31 is the firmware version. I have only tried this particular version...

You can step, reset, run, halt, set the breakpoint and read file registers. It works both

from the GUI and the cli.

ICD TODO

• MPLAB has a setting for target CPU frequency, I have only tried with a 20MHz

crystal, so there may be adjustments to be made to the serial port timeout settings

in gpsim.

• The source, disassembly, watch, symbol and RAM windows works. And the rest

doesn’t. I guess the breadboard should be able to work at least for the pic, but it

doesn’t.

• EEPROM support

• modifying data

• Fix the UI to give more feedback about what’s happening during long delays.

• Better error detection. gpsim doesn’t always see that the target is not functional.

Chapter 13

Examples

The examples/ subdirectory contains several examples. The examples/projects/ sub-

directory demonstrate sample projects that can serve as templates for new projects.

In addition, the examples/modules subdirectory contains several examples illustrating

how to use gpsim’s various modules. Finally, as described in chapter ??, gpsim’s re-

gression tests illustrate many powerful debugging techniques that have not been fully

documented.

usart_gui example

Each example contains a brief README explaining its purpose. For example, the

README for the usart_gui example in the examples/modules directory contains

The tests the USART module with the GUI fix.

The code for a 16f628 PIC is used. The code first transmits a string of

characters, which are instructions to the user, to the USART module which

will then be displayed on its GUI. This verifies that the USART can receive

serial data.

When the focus is on the USART GUI window, characters typed on the keyboard

are sent from the USART to the PIC and then retransmitted from the PIC back

to the USART.

If all works, the typed characters will be displayed in the GUI text window

of the USART. Both transmit and receive must be functioning for this to

happen.

Fixme - we really need to document all of the examples!

63

Chapter 14

Regression Tests

Starting with version 0.22.0, gpsim distributes regression tests. The purpose of a re-

gression test is to validate correctness. The tests are designed to exercise many of

the aspects of gpsim and gpsim’s modules. While designed primarily for developers,

the regression tests also serve as a rich source of examples. There are many features

gpsim’s developers will tuck away into a regression test and fail to document!

64

Chapter 15

Theory of Operation

This section is only provided for those who may be interested in how gpsim operates.

The information in here is ’mostly’ accurate. However, as gpsim evolves so do the

details of the theory of operation. Use the information provided here as a high level

introduction and use the (well commented :]) source to learn the details.

15.1 Background

gpsim is written mostly in C++. Why? Well the main reason is to easily implement

a hierarchical model of a pic. If you think about a microcontroller, it’s really easy to

modularize the various components. C++ lends itself well to this conceptualization.

Furthermore Microchip, like other microcontroller manufacturers, has created families

of devices that are quite similar to one another. Again, the C++ provides ’inheritance’

that allows the relationships to be shared among the various models of pics.

15.2 Instructions

There’s a base class for the 14-bit instructions (I plan to go one step further and cre-

ate a base class from which all pic instructions can be derived). It primarily serves

two purposes: storage that is common for each instruction and a means for generically

accessing virtual functions. The common information consists of a name - or more

specifically the instruction mnemonic, the opcode, and a pointer to the processor own-

ing the instruction. Some of the virtual functions are ’execute’ and ’name’. As the hex

file is decoded, instances of the instructions are created and stored in an array called

program_memory. The index into this array is the address at which the instruction

resides. To execute an instruction the following code sequence is invoked:

program_memory[pc->value]->execute();

65

CHAPTER 15. THEORY OF OPERATION 66

which says, get the instruction at the current program index (pc->value) and invoke

via the virtual function execute(). This approach allows execution break points to be

easily set. A special break point instruction can replace the one residing in the program

memory array. When ’execute’ is called the break point can be invoked.

Program memory

Note that in the above discussion, the pc->value is referred to as the “program index”.

On the 12-bit and 14-bit PIC cores this is unambiguous as the program memory is

instruction-word-wide and the program counter increments by one for each instruction.

On the PIC17 and PIC18 cores, however, the program memory is accessible through

the TBLPTR in byte-wide form. The program counter increments by two for each

instruction.

The program_memory array in gpsim is always an array of instructions. Thus the pc-

>value on a PIC18 is an index whose value is half of the PC register-triple value.

15.3 General File Registers

A file register is simulated by the ’file_register’ class. There is one instance of a

’file_register’ object for each file register in the PIC. All of the registers are collected

together into an array called ’registers’ which is indexed by the registers’ correspond-

ing PIC addresses. The array is linear and not banked like it is in the PIC. (Banking is

handled during the simulation.)

15.4 Special File Registers

Special file registers are all of the other registers that are not general file registers.

This includes the core registers like status and option and also the peripheral registers

like eeadr for the EEPROM. The special file registers are derived from the general file

registers and are also stored in the ’registers’ array. There is one instance for each

register - even if the register is accessible in more than one bank. So for example,

there’s only one instance for the ’status’ register, however it may be accessed through

the ’registers’ array in more than one place.

All file registers are accessed by the virtual functions ’put’ and ’get’. This is done

for two main reasons. First, it conveniently encapsulates the breakpoint overhead (for

register breakpoints) in the file register and not in the instruction. Second, and more

important, it allows derived classes to implement the put and get more specifically. For

example, a ’put’ to the indf register is a whole lot different than a put to the intcon

register. In each case, the ’put’ initiates an action beyond simply storing a byte of data

in an array. It also allows the following code sequence to be easily implemented:

movlw trisa ;Get the address of tris

movwf fsr

movf indf,w ;Read trisa indirectly

CHAPTER 15. THEORY OF OPERATION 67

15.5 Example of an instruction

Here’s an example of the code for the movf instruction that illustrates what has been

discussed above. Somewhere in gpsim the code sequence:

program_memory[pc->value]->execute();

is executed. Let’s say that the pc is pointing to a movf instruction. The ->execute()

virtual function will invoke MOVF::execute. I’ve added extra comments (that aren’t in

the main code) to illustrate in detail what’s happening.

void MOVF::execute(void)

{

unsigned int source_value;

// All instructions are ’traced’ (discussed below). It’s sufficient

//to only store the opcode. However, even this may be unnecessary since

//the program counter is also traced. Expect this to disappear in the

//future...

trace.instruction(opcode);

// ’source’ is a pointer to a ’file_register’ object. It is initialized

//by reading the ’registers’ array. Note that the index depends on the

//’rp’ bits (actually just one bit) in the status register. Time is

// saved by caching rp as opposed to decoding the status register.

source = cpu->registers[cpu->rp | opcode®_IN_INSTRUCTION_MASK];

// We have no idea which register we are trying to access and how it

//should be accessed or if there’s a breakpoint set on it. No problem,

//the virtual function ’get’ will resolve all of those details

// and ’do the right thing’.

source_value = source->get();

// If the destination is W, then the constructor has already initialized

//’destination’. Otherwise the destination and source are the same.

if(opcode&DESTINATION_MASK)

destination = source; // Result goes to source

// Write the source value to the destination. Again, we have no idea

// where the destination may be or

// or how the data should be written there.

destination->put(source_value);

// The movf instruction will set Z (zero) bit in the status register

//if the source value was zero.

cpu->status.put_Z(0==source_value);

CHAPTER 15. THEORY OF OPERATION 68

// Finally, advance the pc by one.

cpu->pc->increment();

}

15.6 Trace

Everything that is simulated is traced - all of the time. The trace buffer is one huge

circular buffer of integers. Information is or’ed with a trace token and then is stored

in the trace buffer. No attempt is made to associate the items in the trace buffer while

the simulator is simulating a PIC. Thus, if you look at the raw buffer you will see stuff

like: cycle counter = ..., opcode fetch = ..., register read = ..., register write = ..., etc.

However, this information is post processed to ascertain what happened and when it

happened. It’s also possible to use this information to undo the simulation, or in other

words you can step backwards. I don’t have this implemented yet though.

15.7 Breakpoints

Breakpoints fall into three categories: execution, register, and cycle.

Execution:

For execution breakpoints a special instruction appropriately called ’Breakpoint_Instruction’

is created and placed into the program memory array at the location the break point is

desired. The original instruction is saved in the newly created breakpoint instruction.

When the break point is cleared, the original instruction is fetched from the break point

instruction and placed back into the program memory array.

Note that this scheme has zero overhead. The simulation is only affected when the

breakpoint is encountered.

Register:

There are at least four different breakpoint types that can be set on a register: read any

value, write any value, read a specific value, or write a specific value. Like the execu-

tion breakpoints, there are special breakpoint registers that replace a register object. So

when the user sets a write breakpoint at register 0x20 for example, a new breakpoint

object is created and insert into the file register array at location 0x20. When the sim-

ulator attempts to access register location 0x20, the breakpoint object will be accessed

instead.

Note that this scheme too has zero overhead, accept when a breakpoint is encountered.

CHAPTER 15. THEORY OF OPERATION 69

Cycle:

Cycle breakpoints allow gpsim to alter execution at a specific instruction cycle. This is

useful for running your simulation for a very specific amount of time. Internally, gpsim

makes extensive use of the cycle breakpoints. For example, the TMR0 object can be

programmed to generate a periodic cycle break point.

Cycle break points are implemented with a sorted doubly-linked list. The linked list

contains two pieces of information (besides the links): the cycle at which the break is

to occur and the call back function1 that’s to be invoked when the cycle does occur.

The break logic is extremely simple. Whenever the cycle counter is advanced (that is,

incremented), it’s compared to the next desired cycle break point. If there’s NO match,

then we’re done. So the overhead for cycle breaks is the time required to implement

a comparison. If there IS a match, then the call back function associated with this

break point is invoked and the next break point in the doubly-linked list serves as the

reference for the next cycle break.

15.8 TIMER1 External input

The timer1 module can support external input, on some processors, as either a crystal

using two pins or a single pin drive.

External Crystal

If an external crystal, typically 32,768 KHz, is being used, then both T1OSCEN and

TMR1CS in register T1CON should be true. Gpsim will then automatically simulate

timer1 being driven at the crystal frequency which can be changed from the default

frequency by changing the value of the processor symbol called tmr1_freq.

Single pin drive

If the single pin drive is being used, then the T1CON register bits for T1OSCEN should

be false and TMR1CS true, and the T1CKI pin must be driven manually such as by a

stimuli command.

1A call back function is a pointer to a function. In this context, gpsim is given a pointer to the function
that’s to be invoked (called) whenever a cycle break occurs.

Chapter 16

LICENSES

16.1 Gpsim.lyx

Copyright c©2000-2010

T. Scott Dattalo, Ralf Forsberg, Robert Pearce, Borut Raÿem and Roy Rankin

The source of this document is gpsim.lyx.

This document is free software; you can redistribute it and/or modify it under the terms

of the GNU General Public License published by the Free Software Foundation; either

version 2, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FIT-

NESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details.

You should have received a copy of the GNU General Public License along with gpsim;

see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place

- Suite 330, Boston, MA 02111-1307, USA.

16.2 Gpsim

The Gpsim program is licensed under version 2 or higher of the GNU General Public

License. Details of this license can be found in the COPYING file which should have

come with this program. If not the license can be found at http://www.gnu.org/licenses/gpl-2.0.html.

16.3 Libraries libgpsim, libgpsim_modules, libgpsim_eXdbm

The libraries libgpsim, libgpsim_modules, and libgpsim_eXdbm are licensed under

version 2.1 of the GNU Lesser General Public License. Details of this license can be

70

http://www.gnu.org/licenses/gpl-2.0.html

CHAPTER 16. LICENSES 71

found in the COPYING.LESSER file which should have come with the program. If

not, the license can be found at http://www.gnu.org/licenses/lgpl-2.1.html.

http://www.gnu.org/licenses/lgpl-2.1.html

Index

7SEGMENTS, 51

and2, 48

attach, 10

break, 10, 11

bus, 10

Capacitors, 51

clear, 10, 13

DHT11, 53

disassemble, 10, 14

DS1307, 54

DS1820 Family, 54

dump, 10, 14

echo, 15

frequency, 10, 15

GNU GPL, 70

HD44780, 54

help, 10, 15

I2C EEPROM, 50

i2c2par, 52

icd, 10, 15

instructions, 65

LCD_7Seg, 55

LED, 51

list, 10, 15

load, 10, 16

log, 10

Logic, 48

macros, 16

module, 10, 18

Modules, 46

node, 10, 19

not, 49

or2, 49

processor, 10, 20

quit, 10, 20

registers, 66

Resistors, 51

run, 10, 20

SED1530, 55

set, 10

Solar, 55

step, 10, 20

Stimulus, 41

stimulus, 10, 21

stopwatch, 10, 22

Switches, 51

symbol, 10, 21

trace, 10, 23

ttl165, 49

ttl377, 49

ttl595, 50

USART module, 48

version, 10

Voltage Sources, 51

x, 10, 23

xor2, 49

72

	gpsim - An Overview
	Making the executable
	Make Details - ./configure options
	RPMs
	Windows

	Running
	Requirements

	Command Line Interface
	attach
	break
	clear
	disassemble
	dump
	echo
	frequency
	help
	icd
	list
	load
	macros
	module
	node
	processor
	quit
	run
	step
	symbol
	stimulus
	stopwatchThe stopwatch is really a collection of attributes and not a command. But the behavior is so similar to a command that it has been included here.
	trace
	version
	x

	Graphical User Interface
	Main window
	Menus
	Buttons
	Simulation mode

	Source Browsers
	.asm Browser
	Opcode view - the .obj Browser

	Register views
	Symbol view
	Watch view
	Stack viewer
	Breadboard
	Trace viewer
	Profile viewer
	Stopwatch
	Scope Window

	Scripting and Configuring
	Embedded Commands
	.sim macro
	.command macro
	.assert macro

	Sockets

	Assertions and Extended Breakpoints
	Assertions and Embedded Simulation commands

	Trace and Log: What has happen?
	Simulating the Real World: Stimuli
	How They Work
	Contention among stimuli

	I/O Pins
	Asynchronous Stimuli
	Analog Asynchronous Stimuli

	Extended Stimuli
	Limitations of the Stimulus Mechanism
	Propagation Delays

	Modules
	gpsim Modules
	USART
	Logic
	I2C EEPROM
	Switches & Resistors
	Voltage Sources, Resistors, and Capacitors
	LED_7SEGMENTS and LED
	I2C slave to Parallel port

	Extras Modules
	Temperature and humidity sensor - DHT11
	64 x 8, Serial, I2C Real-Time Clock - DS1307
	High-Precision 1-Wire Digital Thermometer - DS1820 Family
	Character LCD - HD44780
	Graphic LCD - SED1530
	LCD_7Seg
	Solar

	Writing new modules

	Symbolic Debugging
	Macros
	Hex Files
	The ICD- Not Supported in versions 0.21.0 and later
	Examples
	Regression Tests
	Theory of Operation
	Background
	Instructions
	General File Registers
	Special File Registers
	Example of an instruction
	Trace
	Breakpoints
	TIMER1 External input

	LICENSES
	Gpsim.lyx
	Gpsim
	Libraries libgpsim, libgpsim_modules, libgpsim_eXdbm

